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Abstract
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is
derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS
are formulated. A hodograph solution for the dispersionless KdV equation with
sources (dKdVWS) is obtained via hodograph transformation. Furthermore,
the dispersionless Gelfand–Dickey hierarchy with sources (dGDHWS) is
presented.

PACS number: 02.03.Ik

1. Introduction

In recent years, research in the dispersionless hierarchies has become quite active (see,
for example, [1–11] and references therein). Dispersionless hierarchies arise as the
quasiclassical limit of the original dispersionful hierarchies [2]. The operators in the Lax
equations for dispersionful hierarchy are replaced by phase functions for dispersionless
hierarchy; commutators are replaced by Poisson brackets and the role of Lax pair equations
by dispersionless Lax pair equations. The dispersionless hierarchies have Hamiltonian
formulation [1, 3] and many other aspects [4–6], and several methods of solutions of
dispersionless hierarchies have been formulated [7–11].

The soliton equations with self-consistent sources (SESCS) are another type of integrable
models and have important physical applications [12–28]. There are some ways to derive the
SESCS, for example, the Mel’nikov way [12, 18, 19, 21, 30] and the Leon approach [13–15].
In recent years, SESCS were studied based on the constrained flows of soliton equations which
are just the stationary equations of SESCSs [16, 17]. There are several methods for solving
the SESCSs, for example, the inverse scattering method [18–20], the matrix theory [21], the
∂̄ method and gauge transformation [22, 23], and the Darboux transformation [17, 24–26].
By treating the variable x as the evolution parameter and t as the ‘spatial’ variable, and
by introducing Jacobi–Ostrogradiski coordinates, the SESCS has a t-type Hamiltonian
formulation [27, 28].
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http://dx.doi.org/10.1088/0305-4470/39/26/010
mailto:yangzhihua@tsinghua.org.cn
http://stacks.iop.org/JPhysA/39/8427


8428 Z Yang et al

This paper is devoted to the integrable dispersionless KdV hierarchy with sources
(dKdVHWS). Considering the asymptotic expansion of the wavefunction, and taking the
dispersionless limit of the KdV hierarchy with sources (KdVHWS), we can deduce the
dKdVHWS. The Lax pair equations of the dKdVHWS can be deduced by the dispersionless
limit of the Lax pair equations of the KdVHWS. Similar to the dKdV hierarchy, the dKdVHWS
has a bi-Hamiltonian formulation and can be solved via hodograph transformation. The
Gelfand–Dickey hierarchy with sources (GDHWS) is the integrable generalization of the
Gelfand–Dickey hierarchy, and the corresponding integrable dispersionless hierarchy, i.e.
the dGDHWS, can be deduced.

This paper is organized as follows: in section 2 we review some definitions and results
about the KdVHWS. In section 3, we derive the dKdVHWS as well as its Lax pair equations by
taking the dispersionless limit of the KdVHWS. In section 4, we construct the bi-Hamiltonian
formulation of dKdVHWS. Then we derive the hodograph solution for dispersionless KdV
equation with sources (dKdVWS) in section 5. In section 6, we deduce the integrable
dispersionless Gelfand–Dickey hierarchy with sources (dGDHWS). Some conclusion is made
in section 7.

2. The KdV hierarchy with sources

We first briefly review some definitions and results about the KdV hierarchy with sources in
the framework of Sato theory. Given a pseudo-differential operator (PDO) of the form [29]

L = ∂2 + u (2.1)

where ∂ = ∂
∂x

, u = u(x, t), t = (t3, t5, . . .), and the wavefunction ψ = ψ(x, t), consider the
Lax pair

Lψ = λψ, (2.2a)

ψt2m−1 = B2m−1ψ, (2.2b)

where λ is a parameter, B2m−1 = (
L

2m−1
2

)
+ , m = 1, 2, 3, . . . , and (A)+ here stands for the

differential part of A. The compatibility condition of (2.2a) and (2.2b) gives rise to

∂L

∂t2m−1
= [B2m−1, L], (2.3)

which is the well-known KdV hierarchy [29]. As was shown in [29], the KdV hierarchy could
be written as bi-Hamiltonian systems

ut2m−1 = B0
δH2m+1

δu
= B1

δH2m−1

δu
, m = 1, 2, . . . , (2.4)

where H2m−1 = ∫
h2m−1 dx is a functional of u,B0 = ∂ , B1 = 1

4∂3 + u∂ + 1
2ux are

Hamiltonian operators, and δH2m−1

δu
is the Euler–Lagrange derivative of the Hamiltonian H2m−1

defined as

δH2m−1

δu
= δ

δu

∫
h2m−1 dx =

∞∑
k=0

(−∂)k
∂h2m−1

∂u(k)
. (2.5)

Let us consider [16]

B̃2m−1 = B2m−1 +
n∑

k=1

ψk∂
−1φk, m = 1, 2, 3, . . . , (2.6)
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where ψk = ψk(x, t) and φk = φk(x, t) satisfying

Lψk = λkψk, L∗φk = λkφk, k = 1, . . . , n. (2.7)

Here L∗ = (−∂)2 + u = L is the adjoint operator of L, and λk is a constant, k = 1, . . . , n.
Then the KdV hierarchy with sources (KdVHWS) [16, 20, 24, 30] can be defined as

∂L

∂t2m−1
= [B̃2m−1, L], (2.8a)

Lψk = λkψk, (2.8b)

L∗φk = λkφk (2.8c)

with the Lax pair given by

Lψ = λψ, (2.9a)

ψt2m−1 = B̃2m−1ψ; (2.9b)

namely, under (2.8b) and (2.8c), the compatibility condition of (2.9a) and (2.9b) gives rise
to (2.8a).

3. Dispersionless limit

Following the procedure introduced in [2, 3, 9, 10], we could derive the dispersionless hierarchy
by taking the dispersionless limit of the initial system. Taking T = εt, X = εx, and thinking
of u(x, t) = u

(
X
ε
, T

ε

) = U(X, T ) + O(ε) as ε → 0, L in (2.1) changes into

Lε = ε2∂2
X + u

(
X

ε
,
T

ε

)
= ε2∂2

X + U(X, T ) + O(ε), (3.1)

where ∂X = ∂
∂X

. It can be proved [3] that

L = σ ε(Lε) = p2 + U (3.2)

satisfies

LT2m−1 = {B2m−1,L}, (3.3)

where σ ε denotes the principal symbol [2], the bracket {, } is the Poison bracket defined in 2D
‘phase space’ (p,X) as

{A,B} = ∂A

∂p

∂B

∂X
− ∂A

∂X

∂B

∂p
, (3.4)

and B2m−1 = (L 2m−1
2 )+ now refers to nonnegative powers of p. We define (3.3) as the

dispersionless KdV (dKdV) hierarchy [3], and the first few equations are expressed as

UT1 = UX, (3.5a)

UT3 = 3
2UUX, (3.5b)

UT5 = 15
8 U 2UX, (3.5c)

UT7 = 35
16U 3UX, . . . . (3.5d)

As was shown in [3], equation (3.5b) has tri-Hamiltonian formulation as

UT3 = D1
δH5

δU
= D2

δH3

δU
= 3

4
D3

δH1

δU
, (3.6)
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where
D1 = 2∂X, D2 = U∂X + ∂XU, D3 = U 2∂X + ∂XU 2,

H1 =
∫

U dx, H3 = 1

4

∫
U 2 dx, H5 = 1

8

∫
U 3 dx.

For the general case, define

H2m−1 = 2

2m − 1
TrL 2m−1

2 , (3.7)

where Tr A = ∫
Res A dx, and Res A is the residue of the general Laurent polynomial of the

form A = ∑+∞
i=−∞ ai(X)pi , i.e. the coefficient of the p−1 term, then the Hamiltonians (3.7)

are in involution with respect to any of the three Poisson brackets

{H2m−1,H2l−1}i =
∫

dx
δH2m−1

δU
Di

δH2l−1

δU
= 0, i = 1, 2, 3, (3.8)

and dKdV hierarchy (3.3) has the tri-Hamiltonian formulation

UT2m−1 = D1
δH2m+1

δU
= D2

δH2m−1

δU
= (2m − 1)(2m − 3)

(2m − 2)2
D3

δH2m−3

δU
, m = 2, 3, . . . .

(3.9)
It was also shown in [3] that the solution of (3.5b) can be described through the implicit

form
U = f

(
X + 3

2UT3
)
, (3.10)

where f is an arbitrary function.
In what follows, we derive the dispersionless KdV hierarchy with sources (dKdVHWS).
By taking T = εt, X = εx, (2.8) change into

εLεT2m−1 =
[
Bε(2m−1) +

n∑
k=1

ψk

(
X

ε
,
T

ε

)
(ε∂X)−1φk

(
X

ε
,
T

ε

)
, Lε

]
, (3.11a)

Lεψk

(
X

ε
,
T

ε

)
= λkψk

(
X

ε
,
T

ε

)
, (3.11b)

L∗
εφk

(
X

ε
,
T

ε

)
= λkφk

(
X

ε
,
T

ε

)
, (3.11c)

where Bε(2m−1) = (
L

2m−1
2

ε

)
+.

Similar to the dispersionless KP case in [2, 9, 10], we consider the following WKB
asymptotic expansion of ψk

(
X
ε
, T

ε

)
and φk

(
X
ε
, T

ε

)
, k = 1, 2, . . . , n,

ψk

(
X

ε
,
T

ε

)
∼ exp

{
S(X, T , λ = λk)

ε
+ βk1 + O(ε)

}
, ε → 0, (3.12a)

φk

(
X

ε
,
T

ε

)
∼ exp

{
−S(X, T , λ = λk)

ε
+ βk2 + O(ε)

}
, ε → 0. (3.12b)

It can be calculated that

ψk

(
X

ε
,
T

ε

)
(ε∂X)−1φk

(
X

ε
,
T

ε

)
= eβk1+βk2

[
(ε∂X)−1 +

(
∂

∂X
S(X, T , λ = λk

)
+ O(ε))(ε∂X)−2 +

( (
∂

∂X
S(X, T , λ = λk)

)2

+ O(ε)

)
(ε∂X)−3 + · · ·

]
,
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as ε → 0. Therefore, we have

σ ε

(
ψk

(
X

ε
,
T

ε

)
(ε∂X)−1φk

(
X

ε
,
T

ε

))
= vk

p − pk

, (3.13)

where

vk = eβk1+βk2 , pk = ∂

∂X
S(X, T , λ = λk). (3.14)

Taking the principal symbol of both sides of (3.11a), we have

LT2m−1 =
{
B2m−1 +

n∑
k=1

vk

p − pk

,L
}

= {B2m−1,L} +

{
n∑

k=1

vk

p − pk

,L
}

, (3.15)

and the dispersionless limits of (3.11b) and (3.11c) lead to

p2
k + U = λk,

∂

∂X
(pkvk) = 0. (3.16)

Under (3.16), it can be found that{
vk

p − pk

,L
}

= −2vk,X; (3.17)

therefore, the dispersionless limit of (3.11), i.e. dKdVHWS, reads

UT2m−1 = {B2m−1,L} − 2
n∑

k=1

vk,X,m = 1, 2, 3, . . . , (3.18a)

p2
k + U = λk, (3.18b)

∂

∂X
(pkvk) = 0. (3.18c)

Integrating (3.18c) and taking λm
k as the integral constants, we can eliminate vk in (3.18a) and

rewrite dKdVHWS in another form

UT2m−1 = {B2m−1,L} − 2
n∑

k=1

(
λm

k√
λk − U

)
X

. (3.19)

If we take the dispersionless limit of (2.9), we will obtain the Lax pair equations of dKdVHWS
(3.18) as

p2 + U = λ, (3.20a)

pT2m−1 =
(
B2m−1 +

n∑
k=1

vk

p − pk

)
X

; (3.20b)

namely, under (3.18b) and (3.18c), the compatibility condition of (3.20a) and (3.20b) gives
rise to (3.18a). We can eliminate vk and pk in (3.20b) and rewrite (3.20) in another form

p2 + U = λ, (3.21a)

pT2m−1 =
(
B2m−1 +

n∑
k=1

λm
k

p
√

λk − U − (λk − U)

)
X

, (3.21b)

which are the Lax pair equations of (3.19).
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We give two examples in the following. The first one is the dispersionless KdV equation
with sources (dKdVWS)

UT3 = 3

2
UUX − 2

n∑
k=1

(
λ2

k√
λk − U

)
X

, (3.22)

with the Lax pair equations given by

p2 + U = λ, (3.23a)

pT3 =
(

p3 +
3

2
Up +

n∑
k=1

λ2
k

p
√

λk − U − (λk − U)

)
X

. (3.23b)

And the second example is the dispersionless KdV(5) equation with sources (dKdV(5)WS)

UT5 = 15

8
U 2UX − 2

n∑
k=1

(
λ3

k√
λk − U

)
X

, (3.24)

with the Lax pair equations given by

p2 + U = λ, (3.25a)

pT5 =
(

p5 +
5

2
Up3 +

15

8
U 2p +

n∑
k=1

λ3
k

p
√

λk − U − (λk − U)

)
X

. (3.25b)

4. Hamiltonian formulation of dKdVHWS

It is well known that the KdV hierarchy has bi-Hamiltonian formulation [29], the dKdV
hierarchy has tri-Hamiltonian formulation [3], or even further, quasi-Hamiltonian formulation
[1], and the KdVHWS has bi-Hamiltonian formulation [27]. Motivated by the Hamiltonian
formulation of the dKdV case [3], we would construct the bi-Hamiltonian formulation of the
dKdVHWS (3.19).

Let us first consider dKdVWS (3.22). Set

Ak = 2λ2
k

∫ √
λk − U dx, Bk = 2λk

∫ √
λk − U dx, (4.1)

then by direct computation we have

D1
δAk

δU
= 2∂X

(
− λ2

k√
λk − U

)
= −2

(
λ2

k√
λk − U

)
X

,

D2
δBk

δU
= (U∂X + ∂XU)

(
− λk√

λk − U

)
= − λ2

kUX

(λk − U)3/2
= −2

(
λ2

k√
λk − U

)
X

.

Therefore, if we denote

H̃ 3 = H3 +
n∑

k=1

Bk =
∫

dx

(
1

4
U 2 + 2

n∑
k=1

λk

√
λk − U

)
, (4.2a)

H̃ 5 = H5 +
n∑

k=1

Ak =
∫

dx

(
1

8
U 3 + 2

n∑
k=1

λ2
k

√
λk − U

)
, (4.2b)
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then equation (3.22) can be written in the two Hamiltonian forms

UT3 = D1
δH̃ 5

δU
= D2

δH̃ 3

δU
. (4.3)

For the dKdVHWS (3.19), denote

H̃ 2m−1 = H2m−1 + 2
n∑

k=1

λm−1
k

∫ √
λk − U dx, (4.4)

we can directly prove (see the appendix) that the Hamiltonians H̃ 2m−1,m = 1, 2, . . . , satisfy

{H̃ 2m−1, H̃ 2l−1}i =
∫

dx
δH̃ 2m−1

δU
Di

δH̃ 2l−1

δU
= 0, i = 1, 2, (4.5)

therefore, the dKdVHWS (3.19) have bi-Hamiltonian formulation

UT2m−1 = D1
δH̃ 2m+1

δU
= D2

δH̃ 2m−1

δU
, m = 1, 2, . . . . (4.6)

5. Hodograph solution for dKdVWS

In this section, using the hodograph transformation [7, 9, 10], we will derive the hodograph
solution for the dKdVWS (3.22). Following [7] and letting UT3 = B(U)UX, we can find from
(3.22) that

B(U) = 3

2
U −

n∑
k=1

λ2
k

(λk − U)3/2
. (5.1)

Making the hodograph transformation with the change of variables (X, T3) → (U, T3) and
letting X = X(U, T3), we have

0 = dx

dT3
= ∂X

∂U

∂U

∂T3
+

∂X

∂T3
= ∂X

∂U
BUX +

∂X

∂T3
, (5.2)

which implies that

∂X

∂T3
= −B = −3

2
U +

n∑
k=1

λ2
k

(λk − U)3/2
. (5.3)

It can be integrated as

X +

(
3

2
U −

n∑
k=1

λ2
k

(λk − U)3/2

)
T3 = F(U), (5.4)

where F(U) is an arbitrary function of U; (5.4) gives an implicit solution of (3.22). When
F = 0 and λ1 = λ2 = · · · = λn = 0, dKdVWS (3.22) degenerates to dKdV equation (3.5b),
and (5.4) degenerates to the rational solution of (3.5b), U = − 2X

3T
.

When F �= 0 and is convertible, then the solution of dKdVWS (3.22) can be written
through the implicit form

U = F−1

(
X +

(
3

2
U −

n∑
k=1

λ2
k

(λk − U)3/2

)
T3

)
, (5.5)

which is similar to (3.10).
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6. The dispersionless Gelfand–Dickey hierarchy with sources

The well-known Gelfand–Dickey hierarchy with sources (GDHWS) [16] is defined as

∂L

∂tm
= [B̃m, L] =

[
Bm +

n∑
k=1

ψk∂
−1φk, L

]
, (6.1a)

Lψk = λkψk, (6.1b)

L∗φk = λkφk, (6.1c)

where

L = ∂N + uN−2∂
N−2 + · · · + u1∂ + u0, (6.2)

u = (uN−2, . . . , u0)
T , ui = ui(x, t), i = 0, 1, . . . , N − 2, t = (t2, t3, . . .), Bm =

[(L
1
N )m]+, L

∗ = (−∂)N + (−∂)N−2uN−2 + · · · + (−∂)u1 + u0 is the adjoint operator of L, λk

is a constant, k = 1, . . . , n, ψk = ψk(x, t) and φk = φk(x, t), and the Lax pair is given by

Lψ = λψ, (6.3a)

ψtm = B̃mψ; (6.3b)

namely, under (6.1b) and (6.1c), the compatibility condition of (6.3a) and (6.3b) gives rise to
(6.1a).

Following the procedure given above, we can derive the dispersionless Gelfand–Dickey
hierarchy with sources (dGDHWS). Taking T = εt, X = εx, and letting uk

(
X
ε
, T

ε

) =
Uk(X, T ) + O(ε) as ε → 0, (6.1) change into

εLεTm
=

[
Bεm +

n∑
k=1

ψk

(
X

ε
,
T

ε

)
(ε∂X)−1 φk

(
X

ε
,
T

ε

)
, Lε

]
, (6.4a)

Lεψk

(
X

ε
,
T

ε

)
= λkψk

(
X

ε
,
T

ε

)
, (6.4b)

L∗
εφk

(
X

ε
,
T

ε

)
= λkφk

(
X

ε
,
T

ε

)
, (6.4c)

where

Lε = (ε∂X)N + uN−2

(
X

ε
,
T

ε

)
(ε∂X)N−2 + · · · + u1

(
X

ε
,
T

ε

)
ε∂X + u0

(
X

ε
,
T

ε

)
= (ε∂X)N + (UN−2(X, T ) + O(ε))(ε∂X)N−2 + · · · + (U1(X, T )

+ O(ε))ε∂X + U0(X, T ) + O(ε), (6.5)

and Bεm = [(
L

1
N
ε

)m]
+. Consider the following WKB asymptotic expansion of ψk

(
X
ε
, T

ε

)
and

φk

(
X
ε
, T

ε

)
, k = 1, . . . , n,

ψk

(
X

ε
,
T

ε

)
∼ exp

{
S(X, T , λ = λk)

ε
+ βk1 + O(ε)

}
, ε → 0, (6.6a)

φk

(
X

ε
,
T

ε

)
∼ exp

{
−S(X, T , λ = λk)

ε
+ βk2 + O(ε)

}
, ε → 0, (6.6b)
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then the principal symbol [2] of (6.4a) arises

∂L
∂Tm

=
{
Bm +

n∑
k=1

vk

p − pk

,L
}

(6.7)

where

L = σ ε(Lε) = pN + UN−2p
N−2 + · · · + U1p + U0, (6.8)

Bm = σ ε(Bεm), and vk = eβk1+βk2 , pk = ∂
∂X

S(X, T , λ = λk) are obtained by

σ ε

(
ψk

(
X

ε
,
T

ε

)
(ε∂X)−1φk

(
X

ε
,
T

ε

))
= vk

p − pk

. (6.9)

The dispersionless limits of (6.4b) and (6.4c) give rise to

pN
k + UN−2p

N−2
k + · · · + U1pk + U0 = λk, (6.10a)

∂

∂X

(
vk · ∂L

∂p

∣∣∣∣
p=pk

)
= 0; (6.10b)

(6.7) together with (6.10a) and (6.10b) give rise to the dispersionless Gelfand–Dickey
hierarchy with sources (dGDHWS)

∂L
∂Tm

=
{
Bm +

n∑
k=1

vk

p − pk

,L
}

, (6.11a)

pN
k + UN−2p

N−2
k + · · · + U1pk + U0 = λk, (6.11b)

∂

∂X

(
vk · ∂L

∂p

∣∣∣∣
p=pk

)
= 0, (6.11c)

whose Lax pair equations are given by

pN + UN−2p
N−2 + · · · + U1p + U0 = λ, (6.12a)

pTm
=

(
Bm +

n∑
k=1

vk

p − pk

)
X

. (6.12b)

Namely, under (6.11b) and (6.11c), the compatibility condition of (6.12a) and (6.12b) gives
rise to (6.11a).

Under (6.11b) and (6.11c), it can be found by a tedious computation that{
vk

p − pk

,L
}

= aN−2p
N−2 + aN−3p

N−3 + · · · + a0, (6.13)

where aN−2 = −Nvk,X, aN−3 = −N(vkpk)X, and for i = 4, . . . , N ,

aN−i = −vk

i−3∑
j=1

jp
j−1
k UN+1−i+j,X −

i−2∑
l=2

(N − l)
(
vkp

i−2−l
k

)
X
UN−l − N

(
pi−2

k vk

)
X
. (6.14)

When N = 2, we have L = p2 + U , and (6.13) is the same as (3.17).
Similar to the dKdVHWS, the dGDHWS possess bi-Hamiltonian formation and their

solutions can be obtained via hodograph transformation.
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7. Conclusion

We derive dKdVHWS by taking the dispersionless limit of KdVHWS; meanwhile, Lax
pair equations of the dKdVHWS can be obtained by taking the dispersionless limit of the
corresponding dispersionful equations. We have constructed the bi-Hamiltonian formulation
of the dKdVHWS, and have obtained the implicit solutions of the dKdVWS via the hodograph
transformation. For the generalization case, we have deduced the dGDHWS which also
possess bi-Hamiltonian formulation and can be solved via the hodograph transformation.

Acknowledgment

This work was supported by the Chinese Basic Research Project ‘Nonlinear Science’.

Appendix

Here we give the proof of involution relation of the Hamiltonians H̃ 2m−1 (4.4). Since

{H̃ 2m−1, H̃ 2l−1}1 = {H̃ 2m−1, H̃ 2l−3}2 = −{H̃ 2l−3, H̃ 2m−1}2 = −{H̃ 2l−3, H̃ 2m+1}1

= {H̃ 2m+1, H̃ 2l−3}1 = · · · = {H̃ 2m+2l−3, H̃ 1}1,

it suffices to prove that for any m � 1, {H̃ 2m−1, H̃ 1}1 = 0. We can directly calculate that

{H̃ 2m−1, H̃ 1}1 =
∫

δH̃ 2m−1

δU
D1

δH̃ 1

δU
dx

=
∫ (

δH2m−1

δU
−

n∑
k=1

λm−1
k

1√
λk − U

)
2∂X

(
1 −

n∑
k=1

1√
λl − U

)
dx

= −
∫ (

δH2m−1

δU
−

n∑
k=1

λm−1
k

1√
λk − U

)
n∑

l=1

UX√
λl − U(λl − U)

dx.

Since all δH2m−1

δU
,m = 1, 2, . . . , are of the form cUs , where c are constants, and s ∈ N , it

suffices to prove∫
UsUX√

λl − U(λl − U)
dx = 0, l = 1, . . . , n, (A.1)∫

UX√
λk − U

√
λl − U(λl − U)

dx = 0, k, l = 1, . . . , n. (A.2)

For (A.1), let Fl = √
λl − U , then U = λl − F 2

l , UX = −2FlFl,X and∫
UsUX√

λl − U(λl − U)
dx = −2

∫ (
λl − F 2

l

)s

F 2
l

dFl,

which are all zero for the reason that (λl−F 2
l )

s

F 2
l

are rational polynomials of F 2
l and so (λl−F 2

l )
s

F 2
l

dFl

are total differentials.
For (A.2), when k = l, then (A.2) obviously holds; when k �= l, let Gl = λl − U , then

UX = −Gl,X, and∫
UX√

λk − U
√

λl − U(λl − U)
dx =

∫ −Gl,X√
λk − λl + Gl

√
GlGl

dx
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=
∫ −Gl,X

G2
l

√
λk−λl

Gl
+ 1

dx

= 1

λk − λl

∫
1√

λk−λl

Gl
+ 1

d

(
λk − λl

Gl

)
.

Set λk−λl

Gl
= tan2Hkl ; then 1 + λk−λl

Gl
= sec2Hkl, d

(
λk−λl

Gl

) = 2 tan Hkl sec2Hkl dHkl , and

1√
λk−λl

Gl
+ 1

d

(
λk − λl

Gl

)
= 2 tan Hkl sec2 Hkl dHkl

sec Hkl

= 2 d (sec Hkl) ,

which are total differentials, and this proves (A.2).
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